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Abstract

This paper studies the robustness of estimated policy effects to changes in
the distribution of covariates, a key exercise to evaluate the external validity
of (quasi)-experimental results. I propose a novel scalar robustness metric. It
measures the magnitude of the smallest covariate shift needed to invalidate a
claim on the policy effect (say, ATE ≥ 0) supported by the (quasi)-experimental
evidence. I estimate my robustness metric using de-biased GMM, which guar-
antees a parametric convergence rate while allowing for machine learning-based
estimators of policy effect heterogeneity (including LASSO, random forest,
boosting, neural nets). I apply my procedure to study the robustness of policy
effects’ estimates for health-care utilization and financial strain outcomes in
the Oregon Health Insurance experiment. I find that, among all outcomes, the
effect of the insurance policy on outpatient visits is the most robust to shifts in
the distribution of context-specific covariates.
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1 Introduction
Evidence-based policy-making uses experimental and quasi-experimental studies

to guide the adoption of policies in various settings. This approach relies on the
premise that (quasi)-experimental findings are robust and generalizable beyond the
original experimental setting. However, in practice, this is not always the case: There
are several examples of policies that, when implemented in non-experimental settings,
fell short of their own experimental estimates Deaton [2010], Cartwright and Hardie
[2012], Williams [2020]. Researchers and policy-makers may want to complement
their estimates with a tool that quantifies the robustness of their findings for policy
adoption beyond the experimental setting.
In this paper, I develop a new robustness metric, given by a scalar δ∗, that quan-
tifies how much the characteristics of the policy recipients would need to change in
order to invalidate the (quasi)-experimental findings. My metric summarizes the out-
of-sample uncertainty1 that the policy-maker faces regarding the policy recipients’
characteristics. As such, my metric complements traditional summaries of in-sample
uncertainty, like the standard errors, that routinely accompany (quasi)-experimental
estimates, and can be appended to them in the same manner.

As a motivating example, consider a policy-maker who must decide whether to
offer medical insurance coverage to low-income households. The policy-maker has
access to the experimental estimates of Finkelstein et al. [2012] which suggest that a
similar intervention led to higher health-care utilization and reduced financial strain
for recipients in Oregon. The target population of insurance recipients could differ
from the experimental one in Oregon along important dimensions. Our goal is to
quantify how robust the experimental findings would be if relevant characteristics
of the recipients are allowed to change. In this paper, I provide a solution to this
problem by leveraging the policy effect heterogeneity in the experiment.

When policy effects are heterogeneous across sub-populations with different co-
variate values, (quasi)-experimental findings are generally not robust to changes in
the distribution of the covariates. In such cases, even small changes in the distribution

1Quantifying other sources of out-of-sample uncertainty has been a central theme in the recent
econometric literature including Andrews et al. [2017] for moment conditions, Altonji et al. [2005],
Oster [2019], Cinelli and Hazlett [2020] for confounding factors, and the break-down approaches in
Horowitz and Manski [1995], Masten and Poirier [2020].
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of the covariates could lead to significant aggregate changes in the policy effects. For
example, in the Oregon experiment, subsidized health insurance could benefit sicker
patients more than healthier patients. Then, the proportion of recipients with a given
pre-existing health status, health habits, and/or co-morbidities may strongly influ-
ence the overall effect of the policy. Usually, these types of covariates are exclusively
collected in the experimental context and not all of them are accessible in the new
policy context prior to implementation. As a result, the procedures proposed by Hsu
et al. [2020] and Hartman [2020] that re-weight sub-population effects by the new en-
vironment’s entire set of covariates are generally not feasible because such covariates
are missing. The heterogeneity of policy effects across sub-populations with different
covariates values can be hard to model. This is because while domain knowledge
can help select covariates that are predictive of the heterogeneity of policy effects, it
usually cannot pin down a specific functional form for this heterogeneity. Because
this heterogeneity links covariate shifts to shifts in the magnitudes of the aggregate
policy effects, a general approach to robustness must reflect the uncertainty regarding
the heterogeneity’s functional form.

My robustness metric avoids the need to specify a functional form for the pol-
icy effect heterogeneity, letting it instead be flexibly estimated through the (quasi)-
experimental data. Many popular existing approaches to robustness, like Altonji
et al. [2005], Oster [2019] and Cinelli and Hazlett [2020], take advantage of specific
functional forms. When designing a robustness metric for distributional changes, re-
lying on functional form assumptions carries important implications for what type of
shifts the metric can detect. If the way we measure a shift is not consistent with the
way we model heterogeneity the resulting measure of robustness may be misleading.
Consider, for example, measuring the difference between an arbitrary covariate dis-
tribution and the (quasi)-experimental one by the difference in their means. With
an unrestricted form for the heterogeneity of policy effects, we could, in general, con-
struct a mean-preserving shift of the covariates’ distribution which invalidates the
policy-maker’s claim. For example, in the Oregon experiment, if higher income re-
cipients have negative effects while lower-income recipients have positive effects, we
could construct a mean-preserving spread of the income distribution that induces a
negative effect overall. Since their means coincide, such a distribution will have a dis-
tance of zero from the experimental covariates, even though the distributional shift
would change the experimental findings. This example suggests that a robustness
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metric should be general enough to accommodate flexible forms of policy effect het-
erogeneity, whose functional form is, ex-ante, unknown. My robustness metric allows
for arbitrary forms of observable heterogeneity, avoiding the limitations of a paramet-
ric model. Despite its generality, my metric is still easy to construct and interpret: a
one-number summary of heterogeneity which only depends on (quasi)-experimental
data.

There is a natural connection between the covariate robustness exercise in this
paper and the literature on Partial Policy Effects. For example, Rothe [2012] considers
the effect of a marginal or infra-marginal perturbation of the covariate distribution
along a fixed direction on a functional of the unconditional outcome distribution. In
contrast, in this paper, the direction of the perturbation is not specified ex-ante, in
fact it maybe itself the object of interest as it represents, among all possible shifts that
invalidate the policy-maker’s conclusion, the hardest one to detect. This distinction
reflects the different purpose and hence the complementary of the two approaches.
On the one hand, a specific candidate for the covariate distribution is most useful
for decomposition exercises that highlight the contribution of several variables on the
features of the unconditional distribution as highlighted in the application in Rothe
[2012]. On the other hand, searching within a large space of covariate distributions
reflects the robustness exercise that is useful for the policy-maker when evaluating
the experimental evidence for policy adoption.

Measuring robustness to covariate shifts requires choosing a distance between an
arbitrary distribution of the covariates and the (quasi)-experimental one. In my ap-
proach, I adopt Kullback-Leibler divergence distance (KL distance). The KL distance
is a popular choice for sensitivity analysis exercises, appearing recently in Christensen
and Connault [2023] who apply it to models defined by moment inequalities, Duchi
and Namkoong [2021] for distributionally robust stochastic optimization, and Ho
[2023] who uses it in a Bayesian context. It has several advantages in our context.
First, it is invariant to smooth invertible transformations of the covariates, hence
independent of the covariates’ units [Qiao and Minematsu, 2010]. Second, it provides
a closed form expression for the proposed global robustness measure, while other
popular robustness approaches, like Broderick et al. [2020] rely on local approxima-
tions. Leveraging the closed form solution, I cast estimation of my robustness metric
as a GMM problem where the moment equation depends on two components. The
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first is the observed covariate distribution. The second is a functional parameter
capturing the heterogeneity of policy effects, which can be flexibly estimated in the
(quasi)-experimental data.

The heterogeneity of policy effects can often be sparse: out of the rich set of
covariates available in the (quasi)-experiment, just few are needed to approximate the
observable variation of the policy effect. When covariate data is even moderately high-
dimensional, it can be hard to select which covariates are important ex-ante. Machine-
learning estimators, like LASSO, random forest and boosting, can exploit the sparsity
to automatically select the key covariates, reducing the need for ad-hoc procedures.
Using machine-learning to estimate policy effect heterogeneity is appealing, but it may
result in substantial bias in the estimated robustness metric δ∗, due to regularization
and/or model selection. To accommodate machine-learning methods, I construct a
de-biased GMM estimator: I derive the nonparametric influence function correction
for the GMM parameters and leverage the theory in Chernozhukov et al. [2020] to
eliminate the first-order bias from first-step estimators. I show that my metric δ∗

can be consistently estimated at
√
n-rate under mild conditions on the first-step

estimators of the policy effect heterogeneity. Under these conditions the functional
parameter that summarizes heterogeneity can be estimated through modern high-
dimensional methods like LASSO, random forest, boosting and neural nets.

I apply my robustness procedure to study the Oregon health insurance experiment,
whose findings have profound implications for public health Sanger-Katz [2014]. I
replicate results in Finkelstein et al. [2012] and compute the robustness metric for the
policy effects on outcomes capturing recipients’ heath-care utilization and financial
strain. As discussed in Finkelstein et al. [2012] and Finkelstein [2013], the recipi-
ents of the Oregon lottery are predominantly older, have poorer health, and include a
greater percentage of white individuals than the national average. These demographic
features invite questions about the robustness of the Oregon experiment’s outcomes,
especially if they are used to shape policies in other states. The differences in magni-
tude and sign between the effects of Medicaid expansion in Oregon and Massachusetts
have motivated an effort to reconcile the discrepancy by identifying different popu-
lations of beneficiaries in the two states Kowalski [2023]. My robustness exercise is
complementary to Kowalski [2023]: I compute the smallest distributional change in
some important covariates relative to the Oregon benchmark, that can eliminate the
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positive effect of the lottery on recipients’ health-care utilization and financial strain.
I find that the increase in outpatients visits is the most robust outcome among the
measures of health-care utilization and financial strain.

This paper is also related to a larger strand of the econometric and statistics
literature on robustness and sensitivity analysis originally initiated by Tukey [1960]
and Huber [1965]. Recently, there are many other important but distinct robustness
approaches: geared towards external validity Meager [2019], Gechter [2015], Gechter
[2024], robustness to dropping a percentage of the sample Broderick et al. [2020], by
looking at sub-populations Jeong and Namkoong [2020], or with respect to unobserv-
able distributions like in Christensen and Connault [2023], Armstrong and Kolesár
[2021], Bonhomme and Weidner [2018], and Antoine and Dovonon [2020], Adjaho
and Christensen [2022] in the context of optimal policy choice. My paper comple-
ments this tool-set by giving the policy-maker an explicit measure of robustness of a
policy claim to shifts in the covariate distributions. There are two reasons to focus
on observable characteristics. First, observable characteristics are readily available
to the policy-maker and are likely to be of first-level importance when assessing the
robustness of (quasi)-experimental findings. Second, the resulting robustness metric
is identified through the (quasi)-experimental data, limiting the need for bounding or
partial identification approaches.

The paper is organized as follows: Section 2 introduces the basic setting and
the notion of robustness to changes in the covariate distribution. Section 3 presents
the main estimator and its asymptotic properties using the de-biased GMM theory
recently developed in Chernozhukov et al. [2020]. Section 4 applies the proposed
robustness metric to the Oregon health insurance experiment and reports empirical
findings. Section 5 briefly concludes. The main proofs are in the Appendix. The
Supplementary Appendix gathers discussion and extensions and additional results.

2 A robustness metric for covariate shifts
In this section, I use the potential outcome framework to explicitly link the hetero-

geneity of policy effects to the notion of robustness outlined in the introduction. For
simplicity, the discussion focuses on the average treatment effect (ATE) as the main
aggregate policy effect of interest. The policy-maker wants to assess the robustness of
a claim on the magnitude (and/or sign) of the ATE, of the form ATE ≥ τ̃ . The claim
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is true in the (quasi)-experiment but may no longer be true if distribution of the co-
variates changes too much. The idea is to take advantage of the Conditional Average
Treatment Effect (CATE), a functional parameter which links sub-population level
treatment effects with the ATE. I use CATE to characterize, among the distributions
that invalidate the policy-maker’s claim (ATE ≥ τ̃), the one that is closest to the
distribution of covariates in the (quasi)-experiment. I label this distribution the least
favorable distribution because it is the hardest to distinguish from the one in the
(quasi)-experiment. To measure the distance between two covariate distributions I
use the Kullback-Leibler (KL) divergence. The value of the KL divergence between
the least favorable distribution and the (quasi)-experimental covariates will be the
proposed robustness metric δ∗. Any covariate distribution that is closer than δ∗ from
the (quasi)-experimental covariates will be guaranteed to satisfy the policy-maker’s
claim (ATE ≥ τ̃).

2.1 Notation and Set Up
In the (quasi)-experiment, the policy-maker observes an outcome of interest Y ∈

Y , a set of covariate measurements X ∈ X and a treatment status D ∈ {0, 1}. I
consider two sets of covariates. The first set includes covariates which are exclusively
collected in the (quasi)-experimental data and for which no counterpart exists in
census data. For example, in the Oregon health insurance experiment, the recipients’
health status and previous health history is available through survey data but such
information may not be accessible through census variables in other settings (perhaps
other states). The second set includes covariates for which a counterpart exists in
the census data in other states, for example participants’ race and age. To reflect the
division of these two covariate types, X could be partitioned into two sets: X = Xc∪
Xe denoting census covariates and (quasi)-experiment specific covariates respectively.
All variables in X will be used to estimate the treatment effect heterogeneity in
the (quasi)-experiment, which is the functional parameter needed to compute the
robustness metric. The details are introduced in Section 2.3. If the policy-maker had
access to observations on Xc in both the (quasi)-experiment and in the setting where
the policy is to be adopted, my robustness metric can be modified to account for this
additional information. To lighten the notation, in the main text I consider X = Xe

and discuss how to include Xc in the Appendix.

Now I introduce the notation to discuss changes in the distribution of the covari-
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ates. FX denotes the distribution of the covariates in the (quasi)-experiment and and
PX to denote its associated probability measure. The propensity score is defined as
π(x) = P (D = 1|X = x). Following the traditional potential outcome framework, Yd
for d = {0, 1}, denotes the potential outcomes under treated and control status when
the distribution of the covariates follows FX . For example, in the Oregon experiment,
Y1 may represent the financial strain of a recipient if they receive insurance coverage
while Y0 represents the financial strain of the same recipient if they do not receive in-
surance coverage. In principle the distribution of the potential outcomes depends on
the distribution of the covariates. To reflect this, I use Yd and Y ′

d to denote the poten-
tial outcomes when the distribution of the covariates follows FX and F ′

X respectively.
Finally, for any random variable W , calligraphic W denotes its support.

The parameter of interest for the policy-maker is the ATE := E[Y1−Y0]. The Con-
ditional Average Treatment Effect (CATE) defined by τ(x) := CATE(x) = E[Y1 −
Y0|X = x] captures how the average treatment effect changes across sub-populations
with covariate value X = x. Under unconfounded-ness (Assumption 1 i) below), τ(x)
is nonparametrically identified2 by E[Y |D = 1, X = x] − E[Y |D = 0, X = x] in the
(quasi)-experiment Imbens and Rubin [2015].
Assumption 1. Unconfounded-ness and Overlap

i) Y1, Y0 ⊥⊥ D|X.

ii) For all x ∈ X we have 0 < ϵ ≤ π(x) ≤ 1 − ϵ < 1

In the case of a randomized control trial, for example when treatment assignment
is completely randomized or is randomized conditional on covariates, Assumption 1
holds by design. In the case of (quasi)-experimental studies Assumption 1 i) requires
the researcher to carefully evaluate the selection mechanism that governs program
participation. Assumption 1 ii) is strict overlap. Although strict overlap could be
slightly weakened while preserving identification, this version is important for the
estimation of the robustness metric in Section 3.

Here we are interested in the robustness of claims concerning the ATE with respect
to changes in the distribution of the covariates. Because the ATE is obtained by

2If the CATE only partially identified, like in the case on non-compliance based on unobservables,
it is possible to follow a bounding approach for my robustness procedure. I sketch the approach in
the Appendix but leave the details for future research.
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averaging τ(x) with weights proportional to FX we have the following map between
the covariate distributions and the ATE:

ATE : FX 7→
∫

X
τFX

(x)dFX(x) (1)

The subscript FX on τ(x) indicates that, in general, it’s possible that the functional
form of CATE depends on FX . In this case, a change in the distribution of the
covariates from FX to F ′

X would effect the magnitude of ATE through two channels:
a direct effect thorough the weights of FX(x) and an indirect effect through changing
the shape of the function x 7→ τ(x). Of course, without further assumptions, τFX

(x)
is only identified when FX is the experimental distribution. In this paper, I introduce
the covariate shift assumption3 to eliminate the indirect effect.
Assumption 2. (Covariate Shift) Let X ′ denote the covariates in the new envi-
ronment. Then:

i) FY ′
d

|X′(y|x) = FYd|X(y|x) for d = {0, 1}, for all x ∈ X and y ∈ Yd and all
distributions of X ′.

ii) X ′ ⊆ X

Assumption 2 i) says that the causal link between the treatment variable D and
the potential outcomes of interest Y1 and Y0 does not depend on the distribution of the
observables. One could think of Assumption 2 i) as analogous to a policy invariance
condition where the invariance in this case is with respect to the distribution of co-
variates. Assumption 2 ii) says the support of the covariates in the new environments
is contained in the support of the baseline environment. In practice, this limits the
extrapolation to environments for which any value of the covariates could have been
observed in the (quasi)-experimental setting as well, albeit with a different weight.
Because Assumption 2 guarantees that τFX

(x), the CATE, does not vary when FX

is replaced by any other distribution FX′ it is not necessary to index τ(x) with FX .4

Then, the link between FX and ATE reduces to integration against a fixed τ(x):

ATE : FX 7→
∫

X
τ(x)dFX(x) (2)

Before presenting the general framework I give perhaps the simplest nontrivial exam-
3This assumption appears, for example also in Hsu et al. [2020] and Jeong and Namkoong [2020].
4This could be cast as an identification result which follows immediately from the Assumption

2. See Hsu et al. [2020], Lemma 2.1.
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ple of a robustness exercise with respect to the distribution of the covariates.
Example 1. Consider a binary covariate X = {0, 1}. D is randomly assigned,
trivially satisfying Assumption 1. By unconfounded-ness, E[Y1|X = 0],E[Y0|X =
0],E[Y1|X = 1],E[Y0|X = 1] can all be identified by their observed counterparts
E[Y |D = 1, X = 0],E[Y |D = 0, X = 0],E[Y |D = 1, X = 1],E[Y |D = 0, X = 1].
Consequently, the average treatment effect for the sub-populations X = 0 and X = 1,
τ(0) = E[Y1 −Y0|X = 0] and τ(1) = E[Y1 −Y0|X = 1], are also identified. Because X
is Bernoulli, any distribution on {0, 1} is fully described by PX(X = 1) = p1. Suppose
that, in the experiment ATE > 0. Note that:

ATE(FX) = E[Y1|X = 0] · (1 − p1) + E[Y1|X = 1] · p1

− E[Y0|X = 0] · (1 − p1) − E[Y0|X = 1] · p1

= (E[Y1|X = 0] − E[Y0|X = 0]) · (1 − p1) + (E[Y1|X = 1] − E[Y0|X = 1]) · p1

= τ(0) · (1 − p1) + τ(1) · p1.

A shift in the covariate distribution is simply a shift in the parameter p1. Assume the
treatment effects are sufficiently heterogeneous, namely τ(1) > 0 > τ(0) so one group
has positive effects from treatment and the other group has negative effects. What is
the closest covariate distribution that invalidates the claim ATE ≥ 0?
It suffices to find the weights on X = 0, X = 1 such that the ATE is 0. Expressing it
in terms of p1:

τ(0) · (1 − p∗
1) + τ(1) · p∗

1 = 0

A solution is given by:

p∗
1 = −τ(0)

τ(1) − τ(0) ∈ [0, 1]

so the distance |p∗
1 − p1| = | −τ(0)

τ(1)−τ(0) − p1| is largest shift in the covariates that still
guarantees that the claim ATE ≥ 0 holds.

In the general case, under what conditions are we always guaranteed to find a
solution like p∗

1 above? Is it unique? Can we always characterize the distance between
p∗

1 and p1? If the space X is not discrete, a probability distribution on X cannot be
described by a finite dimensional parameter without restricting the class of probability
distributions on X . Moreover, how should one measure the distance between two
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distributions in general?
I start from this last question by introducing a notion of distance that does not require
any parametric restriction on probability distributions.5

Definition 2 (KL-divergence). Then the KL-divergence between two distributions
FX and F ′

X given by:

DKL(F ′
X ||FX) :=

∫
X

log
(
dF ′

X

dFX
(x)
)
dF ′

X

dFX
(x)dFX(x) (3)

where dF ′
X

dFX
is the Radon-Nikodym derivative of the distribution F ′

X with respect to the
experimental distribution FX , provided that P ′

X ≪ PX for the respective probability
measures.

There are several advantages to using the KL divergence to measure the distance
between probability distributions: it is nonparametric, it has useful invariance prop-
erties and it delivers a closed form solution for the policy-maker’s robustness problem
introduced below. Both Ho [2023] and Christensen and Connault [2023] use the
KL divergence to measure the distance between probability distributions in different
contexts.

2.2 The policy-maker’s problem: quantifying robustness

After highlighting the link between the ATE and the distribution of covariates
and choosing a distance measure between probability distributions, we can formalize
the policy-maker’s robustness problem. Consider the claim given by ATE ≥ τ̃ : the
ATE is larger than a desired threshold τ̃ . The sign of the inequality is without loss of
generality, as claims of the type ATE ≤ τ̃ can be accommodated with an equivalent
treatment. The threshold τ̃ captures a minimal desirable aggregate effect that would
make the intervention viable for the policy-maker. It could capture the average cost
for the roll-out of the intervention or the value of ATE for a competing policy. In
Example 1, τ̃ was fixed at 0, which is a natural benchmark if we are interested in a
positive average effect. The policy-maker is interested in the smallest shift from the
(quasi)-experimental distribution, FX , such that the claim ATE ≥ τ̃ is invalidated.

5In Appendix B, I discuss how the general procedure in this paper can be specialized to certain
parametric classes of distributions. In such cases, the relevant covariate shifts coincide with mean
shifts.
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Formally the policy-maker wants to solve the following problem:

inf
F ′

X : P ′
X≪PX ;P ′

X(X )=1
DKL(F ′

X ||FX) (4)

s.t.
∫

X
τ(x)dF ′

X(x) ≤ τ̃ (5)

The optimization problem in Equation (4) searches across all distributions of the
covariates that invalidate the policy-maker’s claim ATE ≥ τ̃ (notice that the ATE
for all the distributions in Equation (5) is less than τ̃) and selects, if they exist, the
one(s) that are closest to the (quasi)-experimental distribution FX , according to the
KL distance in Equation (4). Notice also that τ(x) in Equation (5) is not indexed by
F ′
X because of the covariate shift assumption (Assumption 2).

Remark 3. Here, the class of probability measures for the covariates is restricted to
be absolutely continuous6 w.r.t to FX but no other restriction is imposed: the class of
distributions is nonparametric. Absolute continuity does restrict the distributions F ′

X

to be supported on X . I view it as a reasonable requirement: the feasible distributions
in Equation (5) cannot put mass on a sub-population X = x that could not theoret-
ically be observed in the (quasi)-experimental setting. The support assumption also
appears in the distributional policy effect literature, see Rothe [2012], playing a similar
role. Clearly, treatment effect values for sub-populations with X = x that can never
be observed are not identified. Absent other restrictions, they can lead to arbitrarily
large average effects and making the robustness exercise not very informative.

We are now ready to define the least favorable distribution and the robustness metric.
Definition 4. i) For a given τ̃ ∈ R, the the robustness metric δ∗(τ̃) is the infimum
of Equation (4). ii) The (set of) least favorable distribution(s) {F ∗

X} is the (set of)
minimizer(s) of Equation (4).

I define my metric δ∗(τ̃) as the KL-distance between the experimental distribu-
tion and the least favorable distribution. It quantifies the robustness of the claim
ATE ≥ τ̃ . {F ∗

X} contains the closest distribution(s) of the covariates that invalidates
the target claim. For certain values of τ̃ it may be empty.
Observe that, if the (quasi)-experimental ATE satisfies the constraint in Equation
(5), then we can always choose the least favorable distribution to be the (quasi)-

6This is a refinement of Assumption 1. Namely, with a slight abuse of notation, requiring for
instance that PX , P ′

X ≪ λ will deliver absolute continuity of P ′
X w.r.t PX . Restricting the support

guarantees that P ′
X cannot put mass on areas where PX does not put mass.
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experimental one, namely F ∗
X = FX since it’s feasible and DKL(F ∗

X ||FX) = 0. This
means that the policy-maker’s claim is already invalidated in the (quasi)-experiment.
The problem is non-trivial when the quasi-experimental distribution FX satisfies
ATE(FX) > τ̃ . In such a case, the (quasi)-experimental distribution FX is excluded
from the feasible set of Equation (5). As a result, under some regularity conditions,
the value of DKL(F ∗

X ||FX) in Equation (4) must be strictly positive. Notice that, in
Example 1, we imposed the requirement that the ATE(p1) in the experiment was
larger than 0, to guarantee that the problem was indeed non-trivial.

If X is a finite set, the covariate distribution is discrete. There are many empirical
applications in which covariates are either discrete or have been discretized. For
example, in the Oregon experiment, the recipients’ income may have been discretized
into income groups. When the covariates space is discrete, we can get geometric
insights from the structure of the robustness problem in Equations (4) and (5), like
in the example below:
Example 5. Consider X = {H,M,L} representing income bins: high, medium and
low. A distribution is a triplet (pH , pM , pL). Because pH+pM+pL = 1 the whole space
of probability distributions on X is the 2-simplex. Suppose that CATE is decreasing
in income levels: τ(H) = 1, τ(M) = 2, τ(L) = 3. The average cost of roll-out is equal
to τ̃ = 1.8. The claim is ATE ≥ τ̃ meaning that the ATE should be higher than
average cost. In the experiment ATE is equal to 2.4 > 1.8 which satisfies the claim.

Figure 1 depicts the level sets of the KL distance, the feasible set and the least
favorable distribution from Example 5. The functions in Equations (4) and (5) are
differentiable in pH and pM so the solution is characterized by the standard KKT
conditions. The KL level set associated to δ∗(τ̃) is highlighted in green. The set of
triplets (pH , pM , pL) that are within it are guaranteed to satisfy the policy-maker’s
claim. This region is conservative: there exist covariate distributions that satisfy the
policy-maker’s claim but fall outside of the green contour. This feature reflects the
definition of robustness as a minimization problem in Equations (4) and (5).

13



Figure 1: The triangle represents the collection of all arbitrary probability distribution
triplets (pH , pM , pL) on the discrete set (H, M, L) represented in barycentric coordinates. P
denotes the experimental distribution, given by (0.2, 0.2, 0.6). We have CATE(H, M, L) =
(1, 2, 3) so the conditional treatment effect is greater in the highest income group. The yellow
shaded region is the feasible set: the collection of triplets (pH , pM , pL) with an ATE ≤ 1.8,
which invalidate the policy-maker’s claim. Importantly, the requirement P ′

X ≪ PX excludes
distributions where one of the entries is equal to 0. The solid yellow line is the boundary
of the feasible set. The contour lines represent the level sets of the KL distance of any
distribution in the triangle with respect to the experimental distribution P (bluer indicates
a lower value for the KL divergence). The distribution P ∗ = (0.491, 0.218, 0.291) is the least
favorable distribution. It is the minimizer of the KL divergence, subject to the feasibility
constraint (it lies on the orange line). The green boundary is the level set of KL that
corresponds to δ∗ ≈ 0.296. Any distribution closer than δ∗, within the green boundary is
guaranteed to satisfy the policy-maker’s claim.

When X is not discrete, a visualization like the one in Figure 1 may not be possible.
Nonetheless, given some regularity conditions, a solution for F ∗

X like the one in Figure
1 always exists, is unique, and can be characterized by a closed form expression, with
virtually little difference from the finite dimensional case. This result also guarantees
that the robustness metric δ∗(τ̃) is well defined for a wide range of τ̃ values.

2.3 A closed form solution for quantifying robustness

I characterize the solution for the policy-maker’s robustness problem in Equations
(4) and (5) in the general case under some regularity conditions.
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Assumption 3 (Bounded-ness). The conditional average treatment effect τ(X) is
bounded PX-almost surely over X . In particular for some M ∈ R+ we have:

PX (|τ(X)| ≤ M) = 1

Incidentally, for any covariate probability measure that is absolutely continuous
w.r.t PX , Assumptions 3 continues to hold. This is because PX′ cannot put mass
on the subsets of X that PX considers negligible, which includes the subset of X
where τ(x) is unbounded. In principle, one can weaken Assumption 3 to only require
E[exp(κ|τ(X)|)] < +∞,∀κ > 07. Bounded-ness as in Assumption 3 is not very
restrictive in a micro-econometrics framework where in many contexts, all variables
are bounded in the cross-section. I thus maintain Assumption 3 in its form to ease
the exposition.

Consider the feasible set in Equation (5). While the set, being a half space, is
guaranteed to be convex, it may still be empty. If that is the case, the value of the
minimization problem in Equation (4) is +∞. I avoid such cases by requiring that,
for a given claim, an ATE = τ̃ is attainable, for some distribution F ′

X . This amounts
to assuming that there is enough variation in τ(x) to induce an ATE of τ̃ through
changes in the distribution of the covariates. To appreciate this requirement, it is
instructive to see an extreme case where such requirement fails.
Example 6 (Homogeneous treatment effects). Consider a situation of constant treat-
ment effects. In this case τ(x) = c so ATE(FX) =

∫
X c dFX = c so that the ATE is

equal to c regardless of the distribution of the covariates.

Not surprisingly, if there is no heterogeneity in treatment effects, under Assump-
tion 2 one can freely extrapolate the claim from the (quasi)-experimental distribution
to any other distribution. Constant treatment effects are a rather extreme case. A
more realistic example is when the minimal desired magnitude τ̃ is outside of the
range of variation of the heterogeneous treatment effects. For example, suppose that
2 ≤ τ(x) ≤ 5 with probability equal to 1. Then, choosing τ̃ = 1 results in an empty
feasible set, since no probability distribution may ever integrate against τ(x) to an

7Bounded-ness and its weaker version correspond to A3 and A5 respectively in Komunjer and
Ragusa [2016]. No weaker condition on τ(X) can be obtained, for example along the lines of
Komunjer and Ragusa [2016] A7, because the KL divergence does not satisfy the minimal growth
requirements (in particular, for the KL divergence, the Orlicz heart is strictly smaller than the Orlicz
space).
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ATE of 1. In this case, since the set of distributions in Equation (5) is empty, the
infimum in Equation (4) evaluates to +∞. So we see that enough heterogeneity
of treatment effects is a necessary condition for robustness to be non-trivial.8 The
following assumption guarantees that the feasible set is not empty:
Assumption 4. (Non-emptiness) Denote the interior So of a set S to be the union
of all open sets O ⊆ S. Let L : FX →

∫
X τ(x)dFX(x) be the linear map defined on the

set of probability distributions on X that are absolutely continuous w.r.t PX , denoted
as PX ⊂ M. We require τ̃ ∈ Lo(PX), that τ̃ is in the interior of the range of L.

Assumption 4 says that there is enough observable heterogeneity in treatment
effects to find a distribution of covariates that, when integrated against τ(x), could
induce ATE = τ̃ . Contrast this to the homogeneous treatment effect case in Example
6, where Assumption 3 fails. There, Lo(PX) = ∅. More generally, the length of L(PX)
measures how rich is the set of ATEs that could be produced by choosing an arbitrary
distribution F ′

X . Assumption 4 is testable. For a given value of τ̃ , one could obtain an
estimate of τ(x) and test whether τ̃ is smaller than supx τ(x) or greater than infx τ(x),
depending on the sign of the claim of interest, using the procedure in Chernozhukov
et al. [2013]. Homogeneous treatment effects are a very special case in which such a
test might reject. More broadly, a violation of assumption 4 implies the robustness
metric is infinite, indicating the policy-maker’s claim can’t be invalidated by covariate
shifts.

Assumption 4 is also related to a constraint qualification, akin to a Slater condi-
tion, that appears often in convex problems involving KL and other φ-divergences.
For an excellent overview of these conditions see Komunjer and Ragusa [2016]. In the
setting of this paper, Assumption 4 is sufficient to guarantee strong duality and to
obtain a characterization of the least favorable distribution through convex duality.
In particular, Assumption 4 satisfies the quasi-relative interior condition in Borwein
and Lewis [1993] (Equation (BL)).
Remark 7. The interior condition cannot be relaxed. By Assumption 3, the image
of PX under L is a convex subset of R+, that is, an interval. If τ̃ is at a an endpoint
of this interval, the feasible set in Equation (5) may consist of only a point mass
measure. Because such a covariate measure is not absolutely continuous w.r.t. PX ,

8Moreover, for estimation purposes it is convenient to consider a parameter space for the robust-
ness metric that is a subset of R rather than R ∪ {+∞}.
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the feasible set is again empty and will necessarily result in an infinite value for the
KL-divergence in Equation (4). I provide some additional results about this boundary
cases in Appendix 3.

In Example 1 we imposed the condition ATE(1) = τ(0) < 0 to guarantee that
the problem has a solution. In the context of Example 1, L(PX) = (τ(0), τ(1)), the
image of L is the interval between the conditional average treatment effects at X = 0
and X = 1 since any ATE(p′

1) is a weighted average of τ(0) and τ(1). By requiring
that τ(0) < 0 < τ(1) , τ̃ = 0 ∈ Lo(PX) hence satisfies Assumption 4.

With Assumptions 3 and 4 we are now ready to state the key result that delivers
a closed form solution for the robustness metric in the general case. It says that the
least favorable distribution set in Definition 4 ii) is non-empty and contains a unique
distribution (PX-almost everywhere). Moreover the robustness metric δ∗(τ̃) is finite
and both it and the least favorable distribution have a closed form solution:

Theorem 8 (Closed form solution). Let Assumptions 1, 2, 3 and 4 hold. Then: i)
The infimum in Equation (4) is achieved. Moreover F ∗

X , is characterized, PX-almost
everywhere, by:

dF ∗
X

dFX
(x) = exp(−λ(τ(x) − τ̃))∫

X exp(−λ(τ(x) − τ̃))dFX(x) (6)

where dF ∗
X

dFX
is the Radon-Nikodym derivative of dF ∗

X with respect to dFX and λ is the
Lagrange multiplier implicitly defined by the equation:∫

X
exp(−λ(τ(x) − τ̃))(τ(x) − τ̃)dFX(x) = 0 (7)

ii) The value of the robustness metric δ∗(τ̃) is given by:

δ∗(τ̃) = DKL(F ∗
X ||FX) = − log

(∫
X

exp(−λ(τ(x) − τ̃))dFX(x)
)

(8)

Theorem 8 greatly simplifies the computation of the robustness metric. It shows
that the fully general robustness problem that searches over the nonparametric space
of probability distribution is not substantially harder than the parametric cases in
Examples 1 and 5. We can compare the closed form solution of Theorem 8 with the
KKT solution one could derive for Example 1 and verify that the two solutions are
indeed identical.
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Example 9. Return to the example of the discrete variable so X = {0, 1}. First
notice that the dominating measure here is the counting measure on {0, 1}. The ratio
p∗

1
p1

completely characterizes the solution. Because the problem is one dimensional, the
unique minimizer is the one that satisfies the constraint:

τ(1) · p∗
1 + τ(0) · (1 − p∗

1) = τ̃ =⇒ p∗
1 = τ̃ − τ(0)

τ(1) − τ(0) (9)

Recall that in Example 1 τ̃ = 0. On the other hand, from the solution provided by
Theorem 8 we have:

p∗
1
p1

= exp(−λ(τ(1) − τ̃))
exp(−λ(τ(1) − τ̃)) · p1 + exp(−λ(τ(0) − τ̃)) · (1 − p1)

(10)

where λ is implicitly defined as in Equation (7).
Fact 10. Equations 10 and 9 are equivalent.

In terms of identification, Theorem 8 completely characterizes the robustness met-
ric in terms of the (quasi)-experimental distribution FX and the CATE, τ(x). This
is important because both of them are nonparametrically identified from the (quasi)-
experimental data. Hence, to give an answer to the policy-makers robustness problem,
it is enough to estimate the treatment effect heterogeneity in τ(x). This result also
simplify the estimation strategy, as I discuss in Section 3.

3 Estimation and Asymptotic Results
In this section I introduce a semi-parametric estimator for the robustness metric

δ∗ in Equation (8) and I characterize its asymptotic properties. I show that the
robustness metric can be estimated using a GMM setting which only depends on the
(quasi)-experimental distribution and on the CATE τ(x), both of which are identified
in the quasi experiment. The theory is based on constructing the nonparametric
influence function correction for the de-biased GMM procedure in Chernozhukov et al.
[2020] to account for flexible nonparametric estimation of τ(x).

3.1 An empirical estimate of the robustness metric

The closed form solution in Theorem 8 suggests a natural estimator based on em-
pirical averages. In particular, one would like to replace Equation (8) with its sample
analog using the Generalized Method of Moments (GMM) framework. Consider the
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quantities:

ν0 :=
∫

X
exp(−λ0(τ(x) − τ̃))dFX(x)

where λ0 is defined implicitly as the unique solution to:∫
X

exp(−λ0(τ(x) − τ̃))(τ(x) − τ̃)dFX(x) = 0

The pair of parameters that solves the population moment conditions is denoted by
θ0 = (ν0, λ0)T . Then, the robustness metric is given by δ∗ = − log(ν0). The parameter
space Θ such that θ ∈ Θ ⊆ R2 satisfies some constraints. First, observe that if the
policy-maker’s claim (ATE ≥ τ̃) holds with a strict inequality for FX , then δ∗ > 0.
This implies a restriction on ν0 < 1. Moreover, ν0 > 0 because exp(−λ(τ(x) − τ̃) > 0
for all x ∈ X . Hence, the restriction on ν is 0 ≤ ν0 ≤ 1.

Let W = (X,D, Y ) be the data. Then, as in Newey and McFadden [1994] we can
write the moment condition for (ν0, λ0) as:

E[g(W, θ, τ)] = E

 exp(−λ0(τ0(X) − τ̃)) − ν0

exp(−λ0(τ0(X) − τ̃))(τ0(X) − τ̃)

 =
0
0

 (11)

where τ0(X) denotes the true value of CATE. Assumptions 1–4 guarantee that the
parameters of interest (λ0, ν0) are (globally) identified by Equation (11). Because
the true value for τ0(X) is an unknown but estimable population quantity, I consider
a feasible version of Equation (11) that uses an estimate τ̂(X) in place of τ0(X).
One could define the vector θ̂ = (λ̂, ν̂)T as the approximate solution to the empirical
moment:

En[g(W, θ̂, τ̂)] =
 1

n

∑n
i=1 exp(−λ̂(τ̂(Xi) − τ̃)) − ν̂

1
n

∑n
i=1 exp(−λ̂(τ̂(Xi) − τ̃))(τ̂(Xi) − τ̃)

 =
0
0

 (12)

where τ̂(X) is a plug-in estimate of the conditional average treatment effect. While
Assumption 1 guarantees nonparametric identification of τ0(X), there are many es-
timation strategies, both parametric and nonparametric. For example Athey et al.
[2016] uses random forest, Hsu et al. [2020] uses a doubly robust score function.

One caveat of the estimator based on Equation (12) is that the moment conditions
are not Neyman orthogonal with respect to τ̂(X). As a result, the first-step estimation
of τ̂(X) can, in general, have a first-order effect on the estimator for θ0 = (ν0, λ0)T ,
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and consequently on the estimator for δ∗. This can lead to incorrect inferences on the
robustness metric, see Chernozhukov et al. [2018] for a general discussion. Deriving
primitive conditions on this form of the moment condition requires ad-hoc conditions
on the first-step nonparametric estimator that can be hard or inconvenient to check
in practice. As an alternative, I use the debiased-GMM approach in Chernozhukov
et al. [2020] that allows to choose flexible estimators for τ0(X) while automatically
correcting for the first-order bias.

3.2 De-biased GMM estimator

In this section, I derive the nonparametric correction for the GMM estimator of θ
based on Equation (12). I map causal quantities like τ(X) to the statistical functionals
that identify them and explicitly construct the nonparametric influence function for
the moment conditions. Because these functionals are always implicitly regarded as
mapping the distribution function of the data, F , to some space, it is natural to
index the functional with a subscript F . For example the τ(X) = τF (X) because
depends of the distribution of the data F . The true distribution of the data will be
denoted as F0 and it is understood that τ0(X) = τF0(X). By Assumption 1, τF0(X)
can be nonparametrically identified as the difference between the conditional means:
τF0(X) = γ1,F0(X) − γ0,F0(X) where γ1,F (X) := EF [Y |X,D = 1] and γ0,F (X) :=
EF [Y |X,D = 0]. Both can be gathered in the vector γF = (γ0,F , γ1,F )T .

Now consider a parametric sub-model for the distribution function, consisting of
Fr := (1 − r) ·F0 + rH where F0 is the true baseline distribution function of the data
and H is an arbitrary distribution function which satisfies Assumption 1. For any
r ∈ [0, 1], Fr is a mixture distribution and hence, it is also a valid distribution function.
Moreover, if both F0 and H satisfy Assumption 1 then Fr does as well. With a slight
abuse of notation we can write E[g(W, θ, γF ] to mean E[g(W, θ, γ1,F − γ0,F )] replacing
τF with the statistical functional identifying it. In order to de-bias the moment
conditions with the approach of Chernozhukov et al. [2020] one needs to compute the
nonparametric influence function with respect to γF . The nonparametric influence
function maps infinitesimal perturbations of F in the direction of H in a neighborhood
of F0, to perturbations in R2 (because there are 2 moment conditions). It does so
linearly in H. In particular, the nonparametric influence function of E[g(W, θ, τF )]
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with respect to F , labelled ϕ(·) is implicitly defined by the equation below:

dE[g(W, θ, γFr)]
dr

∣∣∣∣∣∣
r=0

=
∫
ϕ(w, γF0 , θ, α)dH(w) (13)

Note that the Riesz represent ϕ(·) is allowed to depend on γF0 plus additional nonpara-
metric components, gathered in α(·). In the next result I derive the nonparametric
influence function explicitly from Equation (11).
Proposition 11. The de-biased GMM nonparametric influence function based on
moment function g(·) is:

ϕ(w, θ, γ0, α0) =
 exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (−λ)
exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (1 − λ · (γ1,F0(x) − γ0,F0(x) − τ̃))


×
(
d(y − γ1,F0(x))

πF0(x) − (1 − d)(y − γ0,F0(x))
1 − πF0(x)

)

which could be written in the form:

ϕ(w, θ, γ0, α0) =
 exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (−λ)
exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (1 − λ · (γ1,F0(x) − γ0,F0(x) − τ̃))


×


α1,F0(x)
α0,F0(x)

T  d(y − γ1,F0(x))
(1 − d)(y − γ0,F0(x))




with αF0(x) :=
α1,F0(x)
α0,F0(x)

 =
 1

πF0 (x)
1

1−πF0 (x)

.

There are two main multiplicative terms in ϕ(·). The first term is the derivative of
the moment conditions with respect to the first-step estimator. The second one is the
variation of individual treatment effects about their conditional mean, appropriately
weighted by the propensity score. One can immediately check that, by the law of
iterated expectations, EF [ϕ(W, θ, γ0, α0)] = 0 for any θ. Hence we can form the
de-biased GMM moment functions by taking:

ψ(w, γ, θ, α) = g(w, θ, γ) + ϕ(w, θ, γ, α) (14)

Notice that EF0 [ψ(W, θ, γ0, α0)] = 0 so an estimator for θ that uses the de-biased
moment function ψ(·) instead of g(·) will preserve identification. Standard conditions
can be given to guarantee V[ψ(W, θ, γ0, α0)] < ∞ so that ψ(Wi, θ, γ0, α0) is a valid
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influence function. As emphasized in Chernozhukov et al. [2020] the de-biased GMM
form of ψ(·) corrects for the first order bias induced by replacing γ1,F0 − γ0,F0 , the
statistical counterpart of the true τF0 , with a flexibly estimated γ̂1 − γ̂0. In partic-
ular, for

√
n-consistency of θ, the estimators for γ̂1 and γ̂0 only need to satisfy mild

conditions on the L2-rate of convergence in Assumption 5 below. This allows for flex-
ible nonparametric estimation of γ1,F0 and γ0,F0 using a large collection of machine
learning-based estimators which include, among others, random forest, boosting, and
neural nets. In practice, machine learning methods can help when the covariate space
is high-dimensional but the true τ0(X) has a sparse representation. In Appendix A,
I show Monte Carlo simulations that corroborates these results.

The key property to guarantee de-biasing is given by the Neyman orthogonality
of the new moment conditions with respect to the first-step estimator, established in
the result below.
Proposition 12. Equation (14) satisfies Neyman orthogonality.

Consider now the empirical version of the de-biased GMM equations:

ψ̂(θ, γ̂, α̂) = 1
K

K∑
k=1

1
|Ik|

∑
i∈Ik

(
g(Wi, θ, γ̂−k) + ϕ(Wi, θ̃, γ̂−k, α̂−k)

)
The de-biased GMM estimator takes advantage of a cross-fitting procedure where
the sample is split into K folds. For each fold k = 1, · · · , K, the nonparametric
components in ψ(·), that is, the γ(·) and α(·) functions, are estimated on the obser-
vations in the remaining (K − 1) folds (note the indexing −k in the subscripts of
γ(·) and α(·)). Sample splitting reduces own-observation bias and, together with the
Neyman orthogonality property established above, avoids complicated Donsker-type
conditions that would potentially not be satisfied for some first-step estimators of γ̂
and α̂, as discussed in Chernozhukov et al. [2020]. Finally note that θ̃ is a preliminary
consistent estimator for θ needed to evaluate ϕ. For example one could use the θ from
the plug-in GMM which is consistent but may not be

√
n-consistent in general. The

de-biased GMM estimator for θ is given by:

θ̂ = arg min
θ∈Θ

ψ̂(θ, γ̂, α̂) (15)

To establish
√
n-convergence of the GMM estimators for θ, some quality conditions

on the L2 rates of convergence of the first-step estimators for γ and α are required.
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Assumption 5. For any k, ∥γ̂−k − γ0∥2
L = oP (N− 1

4 ); ∥α̂−k − α0∥2
L = oP (1).

In Appendix 4, I use Assumptions 1 – 5 to prove the influence function repre-
sentation for θ̂ to which a standard central limit theorem applies to establish the
asymptotic normality of the de-biased GMM estimator for θ = (ν, λ)T . This, in turn,
allows to conduct inference on the parameter of interest, δ∗ through a straightforward
application of the delta method.

Theorem 13 (Asymptotic normality of θ). Let Assumptions 1–5. For θ̂ defined in
Equation (15):

√
n(θ̂ − θ0) d→ N (0, S)

S := (G)−1Ω(G′)−1

G := E[Dθψ(w, θ, γ0, α0)]

Ω := E[ψ(w, θ0, γ0, α0)ψ(w, θ0, γ0, α0)T ]

and Dθψ(·) is the Jacobian of the augmented moment condition with respect to the
parameters in θ.

The parameter of interest follows from a straightforward application of the para-
metric delta method.
Corollary 14 (Asymptotic normality of δ∗). Let δ̂∗ = − log(ν̂). Then

√
N(δ̂∗ − δ∗) d→ N

(
0, S11

ν2
0

)

where S11 is the (1,1) entry of the variance covariance matrix S in Theorem 13.

With the results of Theorem 13 one can obtain a point estimate δ∗, together
with a confidence interval for a pre-specified coverage level. Because of the nature of
the estimand, the researcher or the policy-maker, are likely to care especially about
the lower bound for δ∗. This is because overestimating the δ∗ implies that there is
a distribution of the covariates within the estimated δ̂∗ that invalidates the policy-
maker’s claim. This defies the entire purpose of the robustness exercise. On the other
hand, underestimating δ∗ may result in unduly conservative characterization of the
set of distributions for which the claim is valid, but it does not defy the purpose of
the robustness exercise. A similar, asymmetric approach is followed by Masten and
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Poirier [2020] who report a one-sided confidence region for their breakdown frontier
rather than a confidence band.

3.3 Reporting features of the least favorable distribution

Theorem 8 gives an explicit formula for the least favorable distribution F ∗
X and

shows that it depends on λ0 and τ0(X). The researcher may be interested in F ∗
X

directly 9. If X ⊆ Rd is even moderately high dimensional, it may be very inconve-
nient to look at features of the estimated F ∗

X . Moreover, the rate of convergence of
the estimator of F ∗

X can, in general, be nonparametric. This is because, under some
conditions, it inherits the nonparametric rate of τ̂(X). Instead, the researcher could
report particular moments of interest to compare the experimental distribution FX

and the least favorable distribution F ∗
X . Reporting moments of the covariate distribu-

tion, particularly averages, is a standard practice. For example, comparing covariate
means cross treatment status, like in Rosenbaum and Rubin [1984], may be motivated
motivated by an interest in internal validity. By analogy, comparing moments from
FX and F ∗

X could be motivated by external validity. For this reason, I provide an
estimator for an arbitrary, finite collection of moments of F ∗

X that may be of interest.
An extension of Theorem 13 shows the asymptotic properties of the joint estimator
for θ and the additional parameters, denoted by ζ.

Theorem 15 (De-biased estimator of least favorable moments). Let u : Rd → Rs,
with u ∈ (L∞(X , µ))s for µ some dominating measure of PX . Let ζ0 = EF ∗

X
[u(X)] ∈

Rs. Define the following estimating equation for the parameters (θ̂, ζ̂), that is, the
original parameters of interest, augmented by ζ, the additional moments of the least
favorable distribution:

ψ̂u(θ, ζ, γ̂, α̂) := 1
K

K∑
k=1

1
|Ik|

∑
i∈Ik

 g(Wi, θ, γ̂−k) + ϕ(Wi, θ, γ̂−k, α̂−k)
gu(Wi, θ, ζ, γ−k) + ϕu(Wi, θ, ζ, γ̂−k, α̂−k)


where g(·), ϕ(·), γ(·) and α(·) are the same as in Propositions 11 – 25 and gu(·) and

9In section D.1 of the Supplementary Appendix I leverage results in information theory to offer
an additional interpretation for F ∗

X as a particular conditional distribution.

24



ϕu(·), whose values are vectors in Rs are defined below.

gu(Wi, θ, ζ, γ) = u(Xi) exp(−λ(τ(Xi) − τ̃) − ν · ζ

ϕu(Wi, θ, ζ, γ, α) = u(Xi) exp (−λ(τ(Xi) − τ̃)) · (−λ)

×
(
Di(Yi − γ1(Xi))

π(Xi)
− (1 −Di)(Yi − γ0(Xi))

1 − π(Xi)

)

(θ̂, ζ̂) := arg min
(θ,ζ)∈Rs+2

ψ̂u(θ, ζ, γ̂, α̂)T ψ̂u(θ, ζ, γ̂, α̂) + oP (1) (16)

Let Assumptions 1–5 hold. Then:

1√
n

K∑
k=1

∑
i∈Ik

ψu(Wi, θ, ζ, γ̂−k, α̂−k) = 1√
n

n∑
i=1

ψu(Wi, θ, ζ, γ0, α0) + oP (1)

Moreover

√
n

θ̂ − θ0

ζ̂ − ζ0

 d→ N (0, Su)

Su := (Gu)−1Ωu(Gu′)−1

Gu := E[Dθ,ζ ψ
u(W, θ, ζ, γ0, α0)]

Ωu := E[ψu(w, θ0, γ0, α0)Tψu(w, θ0, γ0, α0)]

where Dθ,ζ denotes the Jacobian matrix with respect to the parameters θ and ζ.

4 Empirical Application
In a seminal study of the Oregon Medicaid expansion lottery, Finkelstein et al.

[2012] finds that being offered subsidized health insurance improves recipients’ health-
care consumption and financial outcomes. These results are of great interest for
policy-makers considering a Medicaid expansion in their state. However, in this situ-
ation: (1) the population of recipients from their state could differ from the Oregon
recipients (2) along covariates that are predictive of treatment effect heterogeneity,
(3) these covariates are not available outside of the Oregon experiment. I propose to
complement the findings of Finkelstein et al. [2012] by reporting δ∗ to characterize
their robustness. This metric quantifies the magnitude of the covariate shift needed
to eliminate the positive effects of the health insurance lottery when implemented in
a new state.
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Between March and September 2008, the state of Oregon conducted a series of
lottery draws to grant winners the option to enroll in the Oregon Health Plan (OHP)
Standard. OHP Standard is a Medicaid expansion program available for Oregon
adult residents that are between 19 and 64 years of age and have limited income and
assets. Finkelstein et al. [2012] studies the effect of the insurance coverage on a set of
metrics that include health-care utilization (number of prescription, inpatient, out-
patient and ER visits), recommended preventive care (cholesterol and diabetes blood
test, mammogram and pap-smear test) and measures of financial strain (outstand-
ing medical debt, denied care, borrow/default). The study uses both administrative
and survey data but only the survey data is publicly accessible through Finkelstein
[2013]. Finkelstein et al. [2012] discusses a variety of robustness concerns that center
on external validity. They note that scaling up the experiment can induce a supply
side change in providers’ behavior. They also acknowledge substantial demographic
differences between the study population in Oregon versus the potential recipients in
other states. These differences include, for example, a smaller African American and
a larger white sub-population in Oregon versus other states. From the survey data it
appears that the Oregon lottery participants are older and their health metrics under-
performs the national average. If these covariates are important in determining the
treatment effects of the health insurance, the results of Oregon experiment may not
be robust to a change in the distribution of covariates, which is a key feature of policy
adoption in other states. I stress that, in this context, the re-weighting procedure
in Hartman [2020] or Hsu et al. [2020] is not applicable because the survey-specific
health data that are likely to be most predictive of treatment effect heterogeneity are
not available for many other states. Instead, I propose to study the robustness of the
policy by reporting, for each outcome in Finkelstein et al. [2012], my robustness met-
ric, which can be computed by exploiting the heterogeneity in the publicly available
survey data Finkelstein [2013].

4.1 Robustness in the Oregon Medicaid Experiment

I focus on the Intention to Treat Effect (ITT) of the Oregon Medicaid Experiment
lottery. As noted in Finkelstein et al. [2012], not all recipients who were awarded
the option to enroll in the insurance program actually enrolled. For this reason
Finkelstein et al. [2012] estimates both an ITT and a LATE estimate. One could
argue that the ITT is the key parameter for a policy-maker interested in offering
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the same intervention. To map my framework to the application, recall that the
ITT effect can be considered as an ATE where the treatment D is simply the “the
option to enroll in the health insurance” so the robustness approach discussed in the
paper carries over to the ITT with only notational changes. I consider hypotheses
of the form ITTj ≥ τ̃ or ITTj ≤ τ̃ (depending on the outcome measure of interest)
where j indexes a health-care utilization or a financial strain outcome, following the
notation convention in Finkelstein et al. [2012]. All health-care utilization outcomes
are defined consistently so that a positive sign for ITT means an increase in utilization.
Similarly, all financial strain outcomes are defined so that a negative sign for the
ITT means a decrease in financial strain. I focus on 2 value of interest for τ̃ for
each of the outcome measures. One is τ̃ = 0 which reflects the claim that the ITT
is non-negative (for health-care utilization outcomes), or non-positive (for financial
strain outcomes). The second value is τ̃ = tj = zα · σj where σj is the standard
deviation of the ITT for outcome j. tj is the critical value for the t-statistic of a one
sided test with null hypothesis ITT ≤ 0 for some pre-specified α. As a result δ(tj)
proxies for the magnitude of a change in the covariate distribution that would make
the ITT statistically indistinguishable from a non-positive or non-negative outcome
(respectively). Because σj is in general not available, in the empirical procedure I use
σ̂j in place of σj. The researcher interested in other hypotheses may easily adapt the
procedure by specifying a different τ̃ .

First, I replicate the estimates of the intention to treat effect (ITT) for outcome
variables in each of the three groups in Finkelstein et al. [2012] from a regression
of the outcome variable on the lottery indicator and controls (survey waves indica-
tors, household size indicators and interaction terms between the two). Because the
regression is fully saturated, the estimates for the ITT are nonparametric. In my
robustness exercise I focus on covariates that appear critical for external validity and
are likely to differ across states. Among others, Finkelstein et al. [2012] identifies
gender, age, race, credit access, education and proxies for health status. To capture
the potential heterogeneity, I estimate a Conditional Intention to Treat effect (CITT)
with the set of covariates listed above.10 Finally I use the estimated CITT to compute
the measure of robustness δ∗ for each of the outcome variables in the three categories
and report it, together with the original ITT estimate, for both values of τ̃ discussed

10With discrete covariates, the CATT can be obtained by a fully saturated regression where the
lottery indicator is interacted with all possible combinations of dummies.
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above.11 All outcomes are measured on the survey data Finkelstein [2013].

Columns 2, 3 and 4 of Table 1 contain the experimental ITT for each outcome
variable, the estimates for δ∗(0) and the estimates for δ∗(tj). Here tj = ±1.645 · σj
depending on whether the experimental ITT is positive or negative. As an example,
consider a measure of financial strain, like whether a patient had to borrow or skip a
payment because of medical debt. The intention to treat effect is equal to -0.0515 (the
lottery decreases the probability of skipping a payment by 5%) with standard error
0.0060. δ∗(0) = 0.367 represents the smallest distributional shift of the covariates
that can induce an ITT equal to 0. The δ∗(tj) = 0.265 represents the smallest distri-
butional shift in the covariates that can result in an ITT = −1.645 ·0.0060 = −0.0118
which leads to not rejecting the hypothesis H0 : ITT ≥ 0. For any distributional shift
that is smaller than δ∗(tj) the statistical claim H0 : ITT ≥ 0 would be rejected.

Table 1: δ∗ robustness metric for the health-care utilization and financial strain outcomes
in Finkelstein et al. [2012]. The measure is evaluated at τ̃ = 0 and τ̃ = tj = ±1.645 · σj
for each outcome, depending on the relevant sign of the estimated ITT. The third group of
outcomes, preventive care measures, all have statistically insignificant ITT, leading to a 0
robustness for all δ∗(tj). I omit them in this table.

Outcome Experimental ATE δ∗(0) δ∗(tj)
Health-care Utilization
Prescriptions 0.1296

(0.044)
0.380
(0.007)

0.068
(0.002)

Out-patient visits 0.2986
(0.039)

1.552
(0.022)

0.965
(0.014)

ER visits 0.0064
(0.013)

0.009
(0.001)

0
n/a

In-patient visits 0.0081
(0.005)

0.119
(0.003)

0
n/a

Financial Strain
Out of pocket expenses −0.0622

(0.0069)
0.462
(0.030)

0.346
(0.023)

Outstanding expenses −0.0529
(0.0070)

0.290
(0.0231)

0.204
(0.016)

Borrow/Skip payments −0.0515
(0.0060)

0.367
(0.019)

0.265
(0.014)

Refused care −0.011
(0.0040)

0.063
(0.006)

0.013
(0.002)

I highlight two benefits of this robustness metric. First, it allows an ordinal
comparison of the robustness across outcomes because each δ∗ has the same units

11Comparable (survey weighted) ITT estimates can be found in column 2 labelled Reduced form,
of Table 1. Discrepancies with the (unweighted) ITT effects I compute are due to survey weights.
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and it is measured on the same covariate space. Second, the fourth column of Table
1 has a natural interpretation as a breakdown point: what is the smallest shift of
the distribution of covariates that will break statistical significance of the ITT? A
policy-maker may consider findings with larger δ∗ as more readily applicable to her
own policy setting. From the δ metrics reported in Table 1 I notice that among the
health-care utilization metrics, the ITT on outpatient visits is the most robust while
the ITT on ER visits is the least robust. For the measures of financial strain the ITT
on out of pocket expenses is the most robust and the ITT on instances of refused
care because of medical debt is the least robust. If one had access to census data,
one could choose a set of census variables of interest and compute the KL divergence
between the distribution of the Oregon census variables and a target state’s census
variables. Then the researcher could use this computed measure to benchmark the
magnitude of the robustness metrics in Table 1 to assess whether the magnitude of
each δ∗ is high or low, relative to the observed differences in the census variables.

5 Conclusion
I propose a metric δ∗ to quantify the robustness of (quasi)-experimental findings

with respect to covariate shifts. I focus on claims about aggregate policy effects of the
type (ATE ≥ τ̃). While extending this approach to linear policy parameters beyond
the ATE is straightforward, addressing non-linear distributional policy parameters
poses a challenge due to the absence of a closed-form solution. Estimation and infer-
ence in this context requires future research. For ATE, the closed form solution leads
naturally to a debiased-GMM approach. It allows CATE to be estimated using a
large collection of machine learning techniques which are being increasingly adopted
by applied researchers, including LASSO, random forest, boosting, neural nets. As
demonstrated in the empirical application, the researcher interested in external valid-
ity may append the robustness metric to their effect estimates to inform a discussion
of their results for policy adoption.
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A Monte Carlo Simulations
To show how we can use de-biased GMM to estimate the robustness metric, I

conduct a Monte-Carlo exercise featuring three different data generating processes
(DGPs) with increasing degrees of observable heterogeneity. To capture the idea of
possibly high-dimensional experimental data, I consider a setting with k = 100 co-
variates, all independent and each distributed uniformly on [0, 1] so that X = [0, 1]k.
To reflect the fact that only a few out of all available experimental covariates are
important to predict the treatment effect, I construct τ(x) to be sparse: τ(x) is a
function of of only 1,3 and 10 out of 100 covariates in DGP1, DGP2 and DGP3
respectively. In each DGP, the potential outcomes also depend on an additive unob-
servable noisy error term.12 To demonstrate that heterogeneity drives robustness, I
fix the same baseline ATE for the three DGPs. The shape of τ(x) is chosen to ensure

12We have (U1, U0) are uncorrelated normals with µ = 0, σ = 0.25.
• DGP1: Y1 − Y0 = exp(X1) + U1 − U0;
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the same ATE across all three DGPs, irrespective of treatment effect heterogeneity,
when evaluated with respect to the experimental distribution. I consider M = 1000
replications for each DGP and a sample size of N = 10, 000. The first step τ(x)
is estimated through K-fold cross-fitting, using either boosting or random forest to
estimate γ1(x), γ0(x) and the propensity score πX(x). Hyper-parameters are tuned to
the sample size through a rule of thumb though in practice one may use within-fold
cross-validation. I estimate the implied δ̂∗(τ̃), with τ̃ = 1.3 and evaluate its bias,
variance and MSE against the true value δ∗. I report the estimates of δ∗ using both
the plug-in GMM and de-biased GMM approach below. Note that, because of K-fold
cross fitting, the own-observation bias in the plug-in GMM is attenuated. Still, the
de-biased GMM shows very good bias improvements over the plug-in approach.

Table 2: Monte Carlo Simulation reports the population value for the robustness metrics,
ML estimator used for the nonparametric components and MSE, Bias and Variance. Sample
size n = 10, 000, number of simulations M = 1000.

Data δ∗(τ̃) Method γ(·), α(·) est MSE Bias2 Variance

DGP1 0.4485
plug-in Random Forest 3.7568 · 10−4 0.1235 · 10−4 3.6334 · 10−4

Boosting 1.6311 · 10−3 1.2056 · 10−3 0.4255 · 10−3

de-biased Random Forest 3.7148 · 10−4 0.1030 · 10−4 3.6117 · 10−4

Boosting 1.5278 · 10−3 1.1038 · 10−3 0.4240 · 10−3

DGP2 0.1344
plug-in Random Forest 5.0716 · 10−3 4.9474 · 10−3 0.1242 · 10−3

Boosting 1.1218 · 10−3 1.0622 · 10−3 0.0597 · 10−3

de-biased Random Forest 3.6640 · 10−3 3.5616 · 10−3 0.1024 · 10−3

Boosting 0.7309 · 10−3 0.6749 · 10−3 0.0560 · 10−3

DGP3 0.1328
plug-in Random Forest 5.2825 · 10−3 5.1558 · 10−3 0.1267 · 10−3

Boosting 1.4637 · 10−3 1.3991 · 10−3 0.0646 · 10−3

de-biased Random Forest 3.8369 · 10−3 3.7326 · 10−3 0.1043 · 10−3

Boosting 0.9312 · 10−3 0.8716 · 10−3 0.0596 · 10−3

Table 2 report the results. As heterogeneity of τ(x) in the DGP increases, the
population value of δ∗(τ̃) decreases. This means that the shift in the covariates
required to invalidate the claim (ATE ≥ 1.3) becomes smaller. As a result, the
robustness metric decreases. Moving from DGP1 to DGP2 and DGP3 the population
value of the robustness metric drops from 0.4485 to 0.1344 to 0.1328. The decrease is
most accentuated between DGP1 and DGP2 because of the functional form of τ(x).

• DGP2: Y1 − Y0 = exp(X1) · (X2 + 0.5) · (X3 + 0.5) + U1 − U0;

• DGP3: Y1 − Y0 = exp(X1) · (X2 + 0.5) · (X3 + 0.5) · Π10
j=4(0.1 · Xj + 0.95) + U1 − U0.
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In DGP1 the heuristic choice of hyper-parameters for boosting likely results in
under-fitting the data, leading to a bias one order of magnitude higher than the
variance. For DGP1, the de-biasing procedure results in approximately 20% squared
bias reduction which drives the reduction of approximately the same percentage in
the Mean Squared Error. Variances are comparable between plug-in and de-biased
GMM. The random forest procedure is better overall for MSE criterion. In DGP2, the
bias dominate the variance component, suggesting both random forest and boosting
are under-fitting. This is likely due to the absence of a within-fold cross-validation
step. In this case, the de-biased GMM reduces the squared bias by about 40% for
both random forest and boosting methods. The variances are again very similar
across plug-in and de-biased and boosting has about half of the variance of random
forest. DGP3’s heterogeneity increases slightly, reducing the associated δ∗(τ̃). Like
in DGP2, the bias dominates the variance component regardless of the first-step
estimation method. Similarly, the de-biased GMM approach results in substantial
bias reduction in comparison to the plug-in GMM approach.

B Parametric CATE and parametric shifts
Theorem 8 gives a general closed form solution to the policy-maker’s problem

without restricting the functional form of CATE or imposing a parametric family for
the experimental distribution FX . Leveraging this, I show that if τ(x) is quadratic
and the experimental distribution belongs to the normal family, the least favorable
distribution will also belong to the normal family, up to a shift in the parameters.13

After giving a definition of a class being closed with respect to taking the least favor-
able distribution, I state this result in Proposition 17 below.
Definition 16. We say that a class of parametric distributions indexed by θ, denoted
F θ
X is least-favorable closed with respect to a parametric model for CATE, τη(x), in-

dexed by η ∈ H ⊆ Rdη if for any θ and η, the least favorable distribution defined in
4 ii) has the form F ∗

X = F θ∗
X for some θ∗(η) ∈ Θ, highlighting that θ∗ will in general

also depend on features of η as well.

Proposition 17 (Quadratic-Normal least favorable closed-ness). The parametric class
N (µ, σ2) is least-favorable closed for quadratic Conditional Average Treatment Effects.
That is, if X ∈ Rk follows the multivariate normal distribution X ∼ N (µ,Σ) where

13An extension of Proposition 17 could be shown to hold for the more general class of distributions
in the exponential family given by f(x|θ) = g(θ)h(x) exp(η(θ)T T (x)).
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Σ is p.d. and τ(x) = xTAx + xTβ + c for β ∈ Rk then F ∗
X is the measure induced

by X∗ ∼ N (µ∗,Σ∗) with µ∗ = (Σ−1 + 2λA)−1(Σ−1µ− λβ) and Σ∗ = (Σ−1 + 2λA)−1,
provided that (Σ−1 + 2λA)−1 is p.d. The parameter λ is defined as in Equation (7).

Corollary 18 (Linear-Normal least favorable closed-ness). If τ(x) = xTβ and X ∼
N (µ,Σ) then X∗ ∼ N (µ∗,Σ) where µ∗ = µ− λΣβ.

Corollary 18 states that in a correctly specified linear model τ(x) = xTβ with
joint normal covariates, the nonparametric robustness exercise for arbitrary covariate
shifts reduces to examining mean shifts. Proposition 17 shows that my proposed
robustness procedure generalizes the heuristic of looking at mean shifts (or providing
means as summaries for covariate balance type of exercises) to cases where both τ(x)
and FX take an arbitrary form. In those cases, looking at mean shifts is not sufficient
and may lead to misleading judgement about the robustness of the ATE.

Consider an example where X ∼ N (µ, σ2). CATE is linear: τ(x) = π · X for
some π ∈ R. As a result, ATE is only a function of FX via the population mean µ.
The policy-maker’s desired claim is ATE ≥ 0. The feasible set of distributions in
Figure 2 is the half-space µ ≤ 0. Proposition 17 tells us that the solution to Equation
(4) must be another normal distribution. Observe that DKL(N (µ∗, σ∗)||N (µ, σ)) =
1
2

(
log

(
σ2

σ∗2

)
+ σ∗2

σ2 − 1 + 1
σ2 · (µ− µ∗)2

)
. In that case:

min
(µ∗,σ∗)∈R×R+

1
2

(
log

(
σ2

σ∗2

)
+ σ∗2

σ2 − 1 + 1
σ2 · (µ− µ∗)2

)
s.t. πµ∗ ≤ τ̃

The KKT conditions imply:

µ∗ = µ− λπσ2

σ2∗ = σ2

λ = 1
πσ2

(
µ− τ̃

π

)
The least favorable distribution amounts to a mean shift and no change in the variance.
Contrast the example above with the case where CATE can be quadratic. Proposition
17 still applies, so the solution must have the form N (µ∗, σ2∗). This time though,
ATE is a function of both µ and σ2 as reflected in the feasible set in yellow. The least
favorable distribution amounts to a mean and a variance shift.
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Figure 2: Univariate Normal Distribution, Linear CATE. Each point in the graph represents
a normal distribution parametrized by its mean and standard deviation N (µ, σ2). The
experimental one is P = N (4, 2). The contour lines represent the KL divergence with
respect to P. The policy-maker’s desired claim is ATE ≥ 0. The feasible set shaded in
yellow represents all univariate normal distributions that satisfy ATE ≤ 0. When CATE
is linear, ATE depends only on µ so the feasible set is parallel to the σ axis. As a result,
the least favorable distribution, labelled as P∗, amounts to a mean shift from µ = 4 to
µ∗ = τ̃

π = 0 and no shift in the σ2 parameter.

Figure 3: Univariate Normal Distribution: Quadratic CATE. The setting is identical as
in Figure 2 but here is quadratic, τ(X) = 0.8 · X2 + 8 · X. As a result, ATE(µ, σ) =
0.8 · (µ2 + σ2) + 8µ: both parameters µ and σ2 determine the ATE. The feasible set in
yellow is no longer parallel to the σ axis. The least favorable distribution P∗ features a shift
in both the mean and the variance.
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C Constrained Classes
A researcher may wish to restrict the class of distributions in Equation (5) by im-

posing additional constraints. For example, matching certain moments of the experi-
mental distribution.14 The computational price to pay for each additional constraint
is one additional Lagrange multiplier per constraint, as detailed in Ho [2023]. For a
known moment function q : X → RL we want:∫

X
q(X)dFX =

∫
X
q(X)dF ′

X (17)

From the perspective of robustness, the value of δ∗ for the constrained problem must
be greater than or equal to the value for the unconstrained problem. That is:

inf
dF ′

X : dF ′
X≪dFX ;P ′

X(X )=1
DKL(F ′

X ||FX) ≤ inf
F ′

X : F ′
X≪FX ;P ′

X(X )=1
DKL(F ′

X ||FX)

s.t.
∫

X
τ(x)dF ′

X(x) ≤ τ̃
∫

X
τ(x)dF ′

X(x) ≤ τ̃∫
X
q(x)dF ′

X(x) = q

If the problem contains additional constraints of the form of Equation 17, a simple
characterization of the closed form solution (analogous to Theorem 8) holds, and the
solution to the KL problem takes the form:

dF ∗
X

dFX
= exp(−λ(τ(x) − τ̃))∏L

l=1 exp(−µl(q(x) − q̃))∫
X exp(−λ(τ(x) − τ̃))∏L

l=1 exp(−µl(q(x) − q̃))

where each Lagrange multiplier µL satisfies:∫
X

exp(−µl(q(x) − q̃))(q(x) − q̃)dFX = 0

For estimation, the additional moment restrictions result in L many additional param-
eters, one for each Lagrange multiplier. It is straightforward to adapt the estimation
framework in Section 3 and have θ ∈ Θ ⊆ RL+2 gather the original parameters α and λ
as well as the Lagrange multipliers µ1, µ2, · · · , µL. At the cost of a more cumbersome
notation, all the asymptotic results in Section 3 apply.

14Note that finitely many moment restrictions would still amount to searching the KL infimum
within a infinite dimensional class of probability distributions, and, as such, the nonparametric
nature of the problem is preserved.
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D Interpreting robustness
In this section I suggest an interpretation for robustness metric δ∗(τ̃). For every

sample size n, the robustness metric δ∗(τ) quantifies an exponential bound on the
probability that, the empirical distribution F̂X,n fails to satisfy ATE(F̂X,n) ≥ τ̃ even
though ATE(FX) ≥ τ̃ . After introducing the method of types and stating Sanov’s
theorem, I revisit Example 5 to build the intuition in the finite-dimensional case.15

Suppose we collect a sample containing n i.i.d observations so we obtain a sequence
of covariate values x := (x1, x2, · · · , xn). Define Px(a) = N(a|x)

n
, the proportion of

realizations of a appearing in x, out of n. We define the type Px of x as a list of Px(a)
for all possible values of a. We denote the collection of types as Pn.16 The empirical
distribution F̂X,n is a random variable, taking values in Pn. We can look at the types
that fall within a specific subset E of probability distributions. For example we can
look at all the types that invalidate the experimental conclusion on the ATE. This is
the set E := {Q ∈ PX :

∫
X τ(x)dQ ≤ τ̃}, the constraint in Equation 5. Notice that

whether x ∈ E or not depends only on its type Px. Now, what is the probability that,
drawing a sequence x according to PX , such a sequence invalidates the experimental
results, that is x ∈ E? Sanov’s theorem provides a link between this probability and
the metric of robustness δ∗(τ).

Theorem 19. (Sanov’s theorem) Let X1, · · ·Xn be i.i.d distributed according to FX .
Let E be a convex set of probability distributions. Letting P n

X be the product measure
of n copies of PX . Then

P n
X(E ∩ Pn) ≤ e−nDKL(P ∗

X ||PX)

P ∗ := min
Q∈E

DKL(Q||PX)

Moreover, if the set E is the closure of its interior then

lim
n→∞

1
n

log(P n(E)) → −DKL(P ∗|PX)

Here E := {Q :
∫

X τ(x)dQ ≤ τ̃} is obtained through imposing a linear restriction
15Sanov’s theorem remains true for larger classes of probability distributions, not necessarily

confined to finitely supported X variables like discussed in Csiszár [1984].
16One can think of a type Px as keeping track of the proportion but forgetting the order. So for

example the two sequences of size n = 3 given by x = (a, a, b) and x′ = (a, b, a) are distinct: x ̸= x′.
But they have the same type: Px′ = Px.
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on Q and therefore E is convex. Note that δ∗(τ̃) = DKL(P ∗||P ) is precisely the metric
of robustness in this paper. It provides a bound on the exponential decay of P n

X(E):

P n
X(E) ≤ e−nδ∗(τ̃)

Importantly, the bound is non-asymptotic: it holds for any n. Since τ̃ defines the
constraint set E, it is natural for the above bound to depend on τ̃ . The bound becomes
trivial when δ∗(τ) = 0 and it is monotonically decreasing in the magnitude of δ∗(τ).
When δ∗(τ) approaches infinity, the set E will not contain any valid distributions, so it
is reasonable that the upper bound converges to 0, a guarantee of greater robustness.
Example 5 (continuing from p. 13). Recall X = {High,Medium,Low} income
group and the experimental distribution is FX = (p1, p2, p3) = (0.2, 0.2, 0.6). We
can list the types of sequences of size n that can be generated. Here, the proportion
of High and Medium income individuals out of n determine a type. For n = 3, for
example, there are 10 possible types: (1, 0, 0), (2

3 , 0,
1
3), (2

3 ,
1
3 , 0), (1

3 ,
2
3 , 0), (1

3 ,
1
3 ,

1
3),

· · · , (0, 0, 1). Therefore |P3| = 10. For n = 10, |P10| = 66. They are displayed below
in barycentric coordinates as red points in the 2-simplex. The set E is in yellow.

Figure 4: Possible Types for n = 3 (left panel) and n = 10 (right panel).

Each type Px may contain many sequences. Because the draws from the distribu-
tion FX are i.i.d, all sequences of the same type have the same probability under PX .
The result in Sanov’s theorem gives a finite sample upper bound on the probability
that a sequence Xl = (X1,l, · · · , Xn,l), drawn from the joint distribution P n

X belongs
to the set E. For n = 3, there are only 4 types out of 10 that are in E, namely
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(3, 0, 0), (2, 0, 1), (2, 1, 0), (1, 2, 0). What is the probability associated with them?
P 3
X(xl ∈ E) = 0.128. Because here δ∗(τ̃) = 0.2492, Sanov’s theorem gives the upper

bound e−3·0.2492 = 0.474 so the bound is fairly loose. On the other hand, when n = 10,
26 out of 110 sequence types fall in the set E. The total probability associated with
those sequences is 0.0174. Sanov’s theorem gives an upper bound of 0.0827. Finally
for n = 30 P 30

X (x ∈ E) = 0.000083, while Sanov’s bound gives P 30
X (x ∈ E) ≤ 0.00057.

The bound is known to be optimal in the exponent for limn → ∞.

According to Sanov’s theorem, the robustness metric is the main quantity that
controls the probability of false rejections for the test of ATE ≤ τ against ATE > τ

using F̂X,n in place of FX . The quantitative interpretation of δ∗(τ) is then precisely
as the best exponent for an upper bound of this rejection probability.

D.1 An interpretation for the least favorable distribution

We have seen that the value of δ∗(τ) has a natural interpretation as a probability
bound. What about the least favorable distribution F ∗

X , the minimizer of Equation
(4)? An extension of the result by Sanov provides a new perspective for it. Adapting
a version of Theorem 1 in Csiszár [1984], one obtains a striking result on the joint
distribution of the data (X1, · · ·Xn):

Theorem 20. (adapted from Csizar, 1984) Let Assumptions 2 - 4 hold. Set E =
{Q :

∫
X τ(x)dQ ≤ τ̃}, let PX be the probability measure of i.i.d data. Denote the

empirical distribution of X1, · · · , Xn as F̂n. Then:

(i) the random variables X1, · · · , Xn are asymptotically quasi-independent17 condi-
tional on the event that the empirical distribution F̂n ∈ E

(ii) PX(Xi|F̂n ∈ E) ≈ P ∗(Xi) for i = 1, · · · , n

In contrast to Theorem 19 which holds for any n, Theorem 20 is an asymptotic
result: the approximation of the conditional law in ii) depends on the sample size
n. The interpretation is the following, P ∗n := Πn

i=1P
∗ is the approximate joint law

of the covariates X1, · · ·Xn, if we learned that the empirical distribution F̂X,n does
not satisfy the experimental conclusions. To visualize this, imagine drawing S-many
repeated samples of n observations from PX . Then, combining the previous results:

17See Definition 2.1 in Csiszár [1984].
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(i) limS→∞
1
S

∑S
l=1 1[F̂n,l ∈ E] ≤ e−nδ∗(τ̃)

(ii) P n
X(Xi|F̂n,l ∈ E) ≈ P ∗n(Xi) for any i = 1, · · · , n and l = 1, · · · , S

Part (i) says that the proportion of samples of size n that fail to satisfy the
experimental evidence is bounded above by e−nδ∗(τ̃). This interpretation is closest
to the robustness approach in Broderick et al. [2020] which is based on dropping
a percentage of the sample. The difference is that their procedure focuses on a
proportion of the fixed sample, whereas this result concerns the proportion all possible
samples of size n that could be drawn from the joint distribution of P n

X . A small value
for the robustness metric δ∗(τ̃) will not control this probability very well. Part (ii)
gives an approximate law for the joint distribution P n

X of the collection of samples that
invalidate the experimental results. This tells us that the F ∗

X is not just a by-product
of the optimization problem in Equations (4) and (5) but it gives the approximate law
of the data if we happen to draw a sample which does not satisfy the experimental
results.

E Proofs of main results
I review a few basic results for optimization problems like the one in Equations

(4-5). Consider the set of probability distributions on X , PX := {PX :
∫

X dPX = 1}.
Under the L1 norm, PX is a complete metric space and it is convex. Namely, if
P1, P2 ∈ PX then Pα = αP1 + (1 − α)P2 ∈ PX is a mixture distribution. Moreover,
if there is a dominating measure µ such that f1 = dP1

dµ
and f2 = dP2

dµ
are the Radon-

Nikodym derivatives then dPα

dµ
= αf1 + (1 − α)f2. Now consider the constraint given

in Equation (5). For any two P1 and P2 that satisfy the constraint, Pα for any
α ∈ [0, 1] will satisfy it as well. Hence the constraint set given by Equation (5) is
a convex subset of PX . If such a set is non-empty, then, because DKL(·||FX) is a
strictly convex function on a convex set, the infimization problem in Equation (4)
has a unique solution (PX-almost everywhere) and the infimum is achieved. Theorem
8 characterizes such a solution PX-almost everywhere.

E.1 Proof of Theorem 8

The proof is based on a result that appeared first in Donsker and Varadhan [1975].
More recently Ho [2023] has used a similar argument to characterize global sensitivity
in a Bayesian setting. First note that, by the Radon-Nikodym theorem, dF ∗

X

dFX
exists
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and supp
(
dF ′

X

dFX

)
⊂ X . Recall τ(x) = E[Y1|X = x] − E[Y0|X = x]. Then:

inf
F ′

X : P ′
X≪PX ;P ′

X(X )=1
DKL(F ′

X ||FX)

s.t.
∫

X
τ(x)dF ′

X(x) = τ̃

is equivalent to:

inf
F ′

X : P ′
X≪PX

DKL(F ′
X ||FX)

s.t.
∫

X
τ(x)dF

′
X

dFX
dFX(x) = τ̃

P ′
X(X ) = 1

Using a result from Donsker and Varadhan [1975]:
Lemma 21. Let F ∗

X satisfy dF ∗
X

dFX
= exp(−λ(τ(x)−τ̃))∫

X exp(−λ(τ(x)−τ̃))dFX
. For any probability measure

F̃X such that F̃X ≪ FX we have:

log
(∫

X
exp(−λ(τ(x) − τ̃))dFX

)
= −

[∫
X
λ(τ(x) − τ̃)dF̃X(x) +DKL(F̃X ||FX)

]
+DKL(F̃X ||F ∗

X)

Proof. i) From the lemma above we have:

log
(∫

X
exp(−λ(τ(x) − τ̃))dFX

)
= DKL(F̃X ||F ∗

X)−DKL(F̃X ||FX)−
∫

X
λ(τ(x)−τ̃)dF̃X

Now observe that, since the term log (
∫

X exp(−λ(τ(x) − τ̃)dFX) does not depend on
F̃X we must have:

arg min
F̃X≪FX

DKL(F̃X ||F ∗
X) = arg max

F̃X≪FX

−
∫
X
λ(τ(x) − τ̃)dF̃X −DKL(F̃X ||FX)

= arg min
F̃X≪FX

∫
X
λ(τ(x) − τ̃)dF̃X +DKL(F̃X ||FX)

but clearly F ∗
X = arg minF̃X≪FX

DKL(F̃X ||F ∗
X) so we must have

F ∗
X = arg min

F̃X≪FX

DKL(F̃X ||FX) + λ
∫
X

(τ(x) − τ̃)dF̃X

which is the desired result. ii) Observe that DKL(F ∗
X ||F ∗

X) = 0 hence the value of the
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minimization problem:

min
F̃X≪FX

DKL(F̃X ||FX) + λ
∫
X

(τ(x) − τ̃)dF̃X

= min
F̃X≪FX

DKL(F̃X ||F ∗
X) − log

(∫
X

exp(−λ(τ(x) − τ̃))dFX
)

= − log
(∫

X
exp(−λ(τ(x) − τ̃))dFX

)

E.2 Proof of Theorem 13

Some ancillary lemmas are needed to prove Theorem 13. Their proofs are collected
in the Supplementary Appendix.
Lemma 22 (Kennedy et al. [2020]-Lemma 2). Let ĝ(·) be a function estimated from
the Ick sample and evaluated on the Ik sample.
Then (Pn − P)(ĝ − g0) = OP

(
|ĝ−g0|√

n

)
.

Lemma 23. For ψ̄(θ, γ, α) = E[ψ(w, θ, γ, α)] we have:

1. ψ̄(γ, α0, θ0) is twice continuously Frechet differentiable in a neighborhood of γ0.
2. If Λ is bounded then ∀θ ∈ Θ, ψ̄(γ, α0, θ) ≤ C̄∥γ − γ0∥2

L2.
Lemma 24 (Jacobian consistency). For Jacobian G of the debiased moment condi-
tions:

G = E[Dψ(w, θ0, γ0, α0)] = E
[
∂

∂θ
ψ(w, θ0, γ0, α0)

]
(18)

and θ̂ p→ θ0 we have ∥∂ψ̂(θ̂)
∂θ

−G∥ = oP (1).
Lemma 25 (

√
n - consistency). Let Assumption 5 hold. Then

1√
n

K∑
k=1

∑
i∈Ik

g(Wi, θ, γ̂−k) + ϕ(Wi, θ̃−k, γ̂−k, α̂−k) = 1√
n

n∑
i=1

ψ(Wi, θ, γ0, α0) + oP (1)

We are ready to prove Theorem 13. Denote Ĝ = ĝ(w,θ̂,γ̂)
∂θ

. First note that by
Lemma 24 we have ∥Ĝ − G∥ = oP (1). Then, like in Chernozhukov et al. [2018] we
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have:

Ĝ−1 −G−1 = (G+ ∆̂n)−1 −G−1

= (G+ ∆̂n)−1(GG−1) − (G+ ∆̂n)G−1

= (G+ ∆̂n)−1(G− (G+ ∆̂n))G−1

= (G+ ∆̂n)−1∆̂nG
−1

Then like in Chernozhukov et al. [2018] from the basic matrix inequalities we have:

∥Ĝ−1 −G−1∥ = ∥(G+ ∆̂n)−1∆̂nG
−1∥

= ∥(G+ ∆̂n)−1∥ · ∥∆̂n∥ · ∥G−1∥

= OP (1) · oP (1) ·OP (1)

= oP (1)

Now by the central limit theorem and Lemma 25 we have:

1
|K|

∑
k∈K

( 1√
n

∑
i∈Ik

g(Wi, θ, γ0) + ϕ(Wi, θ̃−k, γ̂−k, , α̂−k)
)

= 1
|K|

∑
k∈K

1√
n

∑
i∈Ik

ψ(Wi, θ, γ0, α0) + oP (1) d→ N (0,Ω)

where Ω = E[ψ(w, θ0, γ0, α0)ψ(w, θ0, γ0, α0)]. Finally observe that a standard GMM
Taylor linearization gives the desired result:

√
n

ν − ν0

λ− λ0

 =

 ∂

∂θ
ψ̂(w, θ0, γ̂, α̂)′V

∂

∂θ
ψ̂(w, θ0, γ̂, α̂)


−1

∂

∂θ
ψ̂(w, θ0, γ̂, α̂)′V

× 1
|K|

∑
k∈K

( 1√
n

∑
i∈Ik

g(Wi, θ, γ̂−k) + ϕ(Wi, θ̃−k, γ̂−k)
)

= (G′V G)−1G′V

 1
|K|

∑
k∈K

1√
n

∑
i∈Ik

ψ(Wi, θ, γ0, α0)
+ oP (1) d→ N (0, S)

E.3 Proof of theorem 15

The proof of Theorem 15 follows the same structure of Theorem 13 and is omitted.
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